UDK: 615.015.11:544.165:577.29:[615.011.4+615.033+615.034]:615.01
P.M. Vasiliev1,2, A.A. Spasov1,2, A.N. Kochetkov2, M.A. Perfiliev1, A.R. Koroleva1, A.V. Golubeva1, D.O. Martynova1, D.A. Babkov1,2, R.A. Litvinov1,2
ФГБОУ ВО «Волгоградский государственный медицинский университет» Министерства здравоохранения Российской Федерации, 1кафедра фармакологии и биоинформатики; 2Научный центр инновационных лекарственных средств
Using a neural network model based on docking, among 87 new synthesized substances of ten structurally diverse chemical classes, ten compounds with predicted high RAGE-inhibitory activity were found, and for these by means of QikProp, PASS programs and on-line resources admetSAR, pkCSM, SwissADME and ADMET-PreServ a consensus in silico estimation of 14 pharmacokinetic ADMET characteristics was carried out. Based on these indicators, consensus integral estimates of pharmacokinetic preferences of these compounds were calculated and substances with favorable pharmacokinetic properties were identified.
multi-target RAGE inhibitors, consensus prediction, in silico, ADMET, integral estimation of pharmacokinetic preference, diabetes mellitus, Alzheimer’s disease.
Васильев Павел Михайлович – д. б. н., с. н. с., зав. лабораторией информационных технологий в фармакологии и компьютерного моделирования лекарств, профессор кафедры фармакологии и биоинформатики, Волгоградский государственный медицинский университет, e-ma